
NASA-CR-1922Z0

Development of an hp-Version
Finite Element Method for

Computational Optimal Control

1_ . r>",."i_"

_, _ i_. _"

Final Report
NASA Grant NAG-l-1435

Apr. 22, 1992- Feb. 21 1993

_3
GO

I..4

I

o_
Z

t_
m

¢i=

t)
C

N
r,4
a"

O

rn
,,0

Prof. Dewey H. Hodges, Principal Investigator
Michael S. Warner, Graduate Research Assistant

School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332-0150

Research Supported by
Spacecraft Control Branch

Technical Monitor: Dr. Daniel D. Moerder
Mail Stop 161

NASA Langley Research Center
Hampton, Virginia 23681-0001

Introduction

The purpose of this research effort was to begin the study of the application of hp-

version finite elements to the numerical solution of optimal control problems. Under NAG-

939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized

h-version finite elements to successfully appruximate solutions to a wide class of optimal

control problems. In that code the means for improvement of the solution was the refine-

merit of the time-discretization mesh. With the extension to hp-version finite elements,

the degrees of freedom include both nodal values and extra interior values associated with

the unknown states, co-states, and controls, the number of which depends on the order of

the shape functions in each element. For details, see [1].

One possible drawback is the increased computational effort within each element re-

quired in implementing hp-version finite elements. We are trying to determine whether this

compmational effort is sufficiently offset by the reduction in the number of time elements

used and improved Newton-Raphson convergence so as to be useful in solving optimal

control problems in real time. Because certain of the element interior unknowns can be

elimina_l at the element level by solving a small set of nonlinear algebraic equations in

which the nodal values axe taken as given, the scheme may turn out to be especially pow-

erful in a parallel computing environment. A different processor could be assigned to each

eleme.m_ The number of processors, strictly speaking, is not required to be any larger than

the number of sub-regions which are free of discontinuities of any kind.

Summary of Completed Work

In order to acquaint Mr. Warner better with the workings of GENCODE and with

finite e]ement methods in general, much of the first part of the year was spent in the study
and modification of GENCODE. The code as described in [1] handled only two stages,

defined _ as a time intervals with distinct differential equations. Mesh refinement was

also p_-_scribed beforehand such that the code always began with two elements per phase,

doubE=g upon successful convergence until the final desired number discretization was

reached.

The modifications were conducted in parallel with a similar effort at NASA Lang-

ley _ Center to implement the h-version finite elements solution procedure into a

MATL_M3 optimal control problem solver, VTOTS. Since the code was being expanded to

include an arbitrary number of stages, the governing equations were rearranged to better

take ad,_.mage of the sparse matrix solvers included in the Harwell subroutine library.

Instead of having separate initial conditions, terminal conditions, and jump conditions at

stage b_aks, the code was modified such that all boundary conditions, include continuity

betw_z_ _ages, were included in a single set of boundary conditions.

The other major advancement of GENCODE was the freedom to specify arbitrarily

the d_.xed time discretization in each phase. Once the solution to that discretization

com_erges successfully, that solution can be interpolated in the code to provide initial

guesses for any subsequently desired discretization. This flexibility proved most helpful in

solving difficult problems.

PREC'ED!NO FglG r. B!_;_r_;'_NOT FILMED

Once completed, the new GENCODE was tested against VTOTS, with refinements

and error correction occurring in both codes as errors were discovered. Since then, VTOTS

has been updated to include state constraints with a more automated switching structure,

an improvement that we plan to incorporate in the new GENCODE.

After the GENCODE testing was completed, we formulated the structure of using

p-_n finite elements to solve two-poim boundary value problems. A summary of that

development is included below. At this stage, a time-marching algorithm has been devel-

oped and tested which utilizes p-version elemgn_ Results were obtained for a nhmber of

problems, looking at accuracy and computational effort over various length time elements,

numbers of Gauss quadrature points, and orders of shape functions. The improvements

in accuracy over h-version elements are dramatic, as expected, and the overall results are

encouraging enough that we plan to move forward into the development of a two-point

boundary problem solver.

Higher-Order Elements

In moving toward eventually applying p-version finite elements to the solution of

optimal comrol problems, we first developed how to use them to the solve nonlinear two-

point boundary value problems. In order to test their performance we started solving

problems involving given initial states and only one time element (i.e., initial-value or

time-marching problems).

Formulation for Optimal Control Problems

The differential equations of interest are assumed to be of the form

= f(x) x e R" (1)

where f is an autonomous function of the state vector x. The boundary conditions can be

specif:_l at the initial time, to, the final time t], or some combination of both. For this
we de_ote

= z0 (2)
x(ts) =xs

For solving optimal control problems, this problem formulation corresponds to the

Euler-Lagrange equations when the control can be solved explicitly in terms of the states

and cm_,ates from the optimality condition. Then the vector x would include both the

states and the costates, and the boundary conditions would include the derived costate

boundary conditions.

The time interval is broken up into N not necessarily equal length time elements, Ate,

such that the time at each element boundary _- is calculated as

i_ =to (3)
t_ -----t__1+ Ati i=2,...,N+ 1

3

and _e definethe states at thesenodesto be

:_, = x(t,) i = 1,...,N+ 1 (4)

Ultimately., only the to and t I nodal values of the states axe of interest as the values at the
internal nodes will be known functions of the values of the states within each time in_.

The time within the ith element, t, is expressed as ti = ti-1 + rAt, where 0 _< y _< 1 and

t4 --_--1
= (5)

At_

so that d2 = At,dr.

The state equations are enforced through use of Lag'range multipliers 6A inside the

time im_al and the boundary conditions are enforced as natural boundary conditions at

the endt_ints:

' [_-/(z)] + (_- x)]_t_=dt &_T 0 (6)

SubsC-tudng for the normalized time _-yields

N 1

at, f0 - + =)l::= o (7)

where the subscript denotes the element number or node for each variable. Integrating by

parts msults in

N 1

/----1

Now L"om Ref. 2, we define C O shape functions for the LaGrange multipliers in each element

in terms of nodal values and internal values

6A, --6i,(1 - r) + 6i,+:_ + 6A,.1(1 - _')T4rg +-'-+ 6A,.,.c_._(T)

d_A, _ 6A_ =At,6£, = -6i, + 6i,+1 _- 6A,.1(1 - 2T)V_ +--. + 6A,.ma2(z)
dv

(9)

Here m is the order of the shape function, with m = 0 corresponding to h-version finite

elements. The polynomial function a,_0") is determined through a set of relationships

de_,eloped in Ref. 2, and a_(_-) is the derivative of a,_(_-) with respect to _-. Similarly, the

shape functions for the values of the states internal to each element axe

,, --"Xi,1 + "Xi,2 (T-- 1) _{_ ... + _,,m+l_m+l(T) (10)

4

Here ag_Mn the polynomial function tim(r) is a recursive relationship developed in [2]. One

fewer _A term is used than _ terms to "ultimately ensure an equal number of equations and

unknowns.

Substituting Eqs. (9) and (10) into Eq. (8) and taking m = 1 for simplicity results in

(ii)

Integrating all the terms that do not depend on f(r) and simplifying results in

N 1

N

Finally., grouping terms multiplying each of the LaGrange multipliers yields

dT

(12)

$AT [-xl,: q- Xl d- Atl _o:(1- r)f(xl) dr]

-" [/oI /oI]" _ _'_T --:Ti,1 "1- -Ti--l,1 q- Ati (1 -- T)f(3:i) dT -_- A_i- 1 T/(Xi--1) dT

/----2

" [/01]+ y_ _i_ -e_ a + zxt_ _(: - r)rf(x_) & = 0
i-----1

(13)

If n is the dimension of the state vector, then Eq. (13) results in (2N + 1)n equations

for (2N + 2)n unknowns: n unknowns at each end point and 2n unknowns within each

eleme_. If the order of the shape function m is greater than one, then the last- block of

Eq. (13) becomes nm equations, and zi would then depend on _i,j for j = l,..., m + 1.

This "trings the total to (N + 1 + Nm)n equations and (N(m + 1) + 2) n unknowns. Thus

for a unique solution to the problem, a combination of n initial and final conditions on the

states must be specified. Note that when solving these equations by a Newton-Raphson

approach that the Jacobian matrix is block diagonal.

5

Note that if the order of the shapeflmction rn is zero, then x_ = xi,1 the h-version

equations result

_T [--Xl nu :_I -_- Atlf(Zi)/2]

"[-_T-bl [X,N -- _N-bl "4"AtN f(ZN)/2]

N

+ _,_T [__, + _,-1 + At,f(x,)/2 + at,_if(x,_l)/2] = O
i=2

(14)

Time-Marching Algorithm

To help determine the feasibility of using p-version finite elements to solve optimal

control problems, Eqs. (13) were first incorporated into a time-marching algorithm. In this

case, the required number of specified boundary conditions are given as initial conditions,

xl = x(to). Eqs. (13) then reduce to the case of only one element N = i = 1, and we

can drop the element subscripts. Thus, the remaining subscripts refer only to the element

order. Rewriting Eqs. (13) in this way one obtains

1:_l:Xl--tt (1--T)f[_:I-}-_:2N/_(T-- 1)3 dT

/01o ½/]

/01
(15)

again assuming first-order shape functions. For each additional order, there is one more

equation and one more unknown.

For shape functions of arbitrary order, the first two of Eqs. (15) become m + 1 equa-

tions, and they are solved for the internal values, _i for i = 1, 2,..., m + 1. These values

axe then used to calculate the nodal values, x2 from the third of Eqs. (15). These final

values become the initial values for the next element, and the process repeats over all the

elements. Notice that in the solution of this problem with a Newton-Raphson algorithm,

the Jacobian matrix is, in general, fully populated.

The process of solving these equations has been implemented in a FORTRAN sub-

routine using a standard full-step Newton-Rapheson algorithm. The routine utilizes the

Hm-weU family of subroutines for solving fully-populated linear systems. A user interface

was developed using the symbolic manipuation software MACSYMA which generates the

appropriate expressions for error evaluation and the Jacobian matrix. Unlike for h-version

finite elements, the quadratures in Eq. (15) in general cannot be done be done by inspection

and similarly are too complicated for software such as MACSYMA. To perform the inte-

grations, Gaussian quadrature with a variable number of Gauss points was implemented
here.

6

Example Problem Formulations

The code was run on a variety of problems for varying orders of shape functions,

numbers of elements, and numbers of Gauss points. The goal was to determine whether

such a code could run in a reasonable length of time for complicated problems, thereby

determining the feasiblility of applying p-version elements to two-point boundary value

problems. That being established, the next step was to determine the relationship be-

tween the number of Gauss points and the accuracy of the solution, in hopes of finding a

formula such as in the case of h-version elements. The results of this experimenting will

be described for a two-state linear system, two one-state systems with different types of

nonlinear dynamics, and an 8-state missile systeuL

Linear System

The first problem that was examined was an idealized spring-mass systen_, with a

spring constant, k and mass, m.

m2 = -kx

with

x(0) = 1.0
5:(0)= 1.0 (16)

The analytical solution to this with k = m = 1 is

x(t) = cos(t) x(1) = 0.543087528
-. (17)

_(t) = -sin(t) 5:(1) = -0.839676091

In Fig. 1, the log of the percentage error in the time-marching algorithm at the final

time is plotted versus the number of Gauss points for various orders of shape functions.

The number of elements in all cases was 5. The percentage error, E, was calculated in

terms of the exact answer from Eq. (17) as

E(1) -- 100 fi y,(1) - 5:g (I8)

where N is the number of elements, and n is the dimension of the state vector y = {x, 5:}.

In subsequent examples, the error is calculated similarly with y again being the appropriate

state v_-tor. This error criterion gives a good idea of how errors axe being propagating

through the algorithm.

Notice that in this case the error is minimiT_l when the number of gauss points is one

more than the order of the shape function in each element. This will hold true for all linear

systems because the polynomial in _- to be integrated is of no higher order than 2m + 1,

where m is the order of the shape function. As shown in [3], using n Gauss quadrature

points and weights results in exact integration of polynomials up to order 2n- 1. Thus

7

only m _- 1 Gauss points are needed to exactly evaluate the integrals when the order of the

shape functions is m. Unfortunately this result does not hold for nonlinear systems.

Changing the number of elements adjusted the error appropriately in each case, but

did not change the relative characteristics between the orders of the shape functions. Also,

the number of Newton steps required was only one for all elements sizes, orders of shape

function, and numbers of Gauss points. Thus for a linear system, the tradeoffs between

accuracy and computational effort are very clear.

Nonlinear System with Quadratic Nonlinearities

The next problem complicates matters some by replacing the linear term with a

quadratic in a first order differential equation

(19)
x(O) = 1.0

where a is a constant. The analytic solution to this problem with a --- 0.5 is

-1
x(t) = -_ x(1)= 2.0 (20)

(0.5t- 1)

In Fig. 2, the log of the percentage error at the final time from Eq. (18) is again plotted

versus the number of gauss points for various orders of shape functions. The results plotted

were obtained with 5 elements, but the trends are the same for any number. In this case

the error is again minimized for the number of Gauss points equals the order of the shape

function plus one. What is different here is that the accuracy actually goes down as more

Gauss points are added, enforcing the point described in [3] that more Gauss points does

not always mean higher accuracy.

The munber of Newton steps per element decreased on average as the number of

elements incre.ased, but only from 6 to 5. And there was no significant decrease in the

number of Newton steps required as the order of the element increased. Thus the high

accuracy, solutions still require considerably more computational effort.

Nonlinear System with Infinite Order Nonlinearities

The next problem examined replaced the quadratic nonlinearity with an exponential

function, an infinite-order nonlinearity.

• (0)= -1

The analytic solution to this problem is

_(t) = - _(-t + e) -_ x(1) = - _(e - 1)

(21)

(22)

In Fig. 3, the log of the percentage error at the final time from Eq. (18) is again

plotted versus the number of Gauss points for various orders of shape functions. The

figure correspond to 5 elements used, but the trends are the same for any number. Here

the line begins to blur about the optimal number of Gauss points. In all cases, the error is

very close to the minimum with one more Gauss point than the order of the shape function,

but depending on the order and the number of elements, one additional Gauss point can

still improve accuracy significantly.

It is encouraging, however, that the number of Newton steps here did decrease with

increased order, though only from 6 to 5 on average for each element. In this problem,

extra iterations are rather insignificant, as the problem has only one state. Also note

that in none of the above examples were there any cases in which the algorithm failed to

converge.

Nonlinear Missile Model

To give the time-marching algorithm a harder test, we next tested it on an 8-state

missile system. While the equations themselves are unimportant, it should be noted that all

the nonlinear system dynamics were retained, including table-lookups on highly nonlinear

lift and drag coefficients. The missile model was integrated from Munch for 5 s, when the

engines would be throttled back. The two controls are angle of attack and roll angle, both

of which were set nominally to 1° throughout the time interval.

To provide a comparison, the model was integrated using the Runge-Kutta method

and 1000 time steps. Fig. 4 plots the error in the finite-element algorithm as calculated

in Eq. (18) using the shooting results as the exact answer. With any fewer than 5 time

elements, the algorithm had difficulty converging. A restricted-step Newton method [4]

was then implemented, which alleviated some of the convergence difficulties while not

appreciably affecting accuracy.

Unfortunately, none of the trends we encountered before with regard to optimal num-

ber of Gauss points held true in this case. It is clear that for "real life" problems, the opti-

mal number of Gauss points may have to be determined on a case-by-case basis. Therefore,

any future algorithms will include capability for adjusting this number. Also, increasing

the order once again brought down the number of Newton steps required for convergence.

Future work

The improvement in accuracy achievable by increasing the order of the shape functions

in all four problems presented here is exceptional The question still remains, however, as

to how the extra computational effort will trade off with this increased accuracy when the

methodology is extended to two-point boundary value problems. Another open question

is how to find a simple means for obtaining the optimal number of Gauss points for more

complicated problems.

Given the encouraging results we have seen using h-version finite elements so far, we

plan to extend GENCODE to include the hp-version finite elements and begin testing it on

9

optimal control problems, including thosewith state constraints. There are alsoa number
of theoretical aspectsof these finite elementsyet to be explored including the effect on
element stability and convergenceproperties.

References

[1] Bless, Robert R.: "Time-Domain Finite Elements in Optimal Control with Application

to Launch Vehicle Guidance." Ph.D. Dissertation, School of Aerospace Engineering,

Georgia Institute of Technology, Mar. 1991 (also NASA. CR 4376, Mar. 1991).

[2] Hodges, Dewey H.; and Hou, Lin-Jun: "Shape Functions for Mixed p-version Finite

Elements in the Time Domain." J. Sound and Vibration, vol. 145, no. 2, Mar. 8, 1991,

pp. 169 - 178.

[3] Press, W. H., Flannery B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical

Recipes, Cambridge University Press, Cambridge, U.K., 1986.

[4] Achar, N. S., "Trim Analysis by Shooting and Finite Elements and Floquet Eigen-

analysis by QR and Subspace Iterations in Helicopter Dynamics," Ph.D. Dissertation,

Florida Atlantic University, Boca Raton, Florida, 1992.

10

t,..

e
W

¢-.
<D

(1)
EL

O
O

ED
O
_J

-5

-6

-7

-8
0

_%%°1

¢

t

I"

ordl,=r= 1

...:: ez :1 -,.2.L- _
.............--.....--............. o..l..,

o tier = 3
1 2 3 4 5 6 7 8 9 10

Number of Gauss Points

Fig. 1: Time-Marching Error at Final Time for Spring Mass System

* q

"2-

o - order'= 1
I=,

W -4- " j

- tXc-

O order = 2I...

EL
"-o /

1/ order = 3
O

,_ _ ." °°.o.°l.°.°.o_..°.o.t .o..o.l..o.o.,

-10 " "

. °

-12

0 1 2 3 4 5 6 7 8 9 10

Number of Gauss Points

Fig. 2: Time-Marching Error at Final Time for _ = x 2

11

0

t,..

o

UJ
.#H

E
(Z)
O
(D
13.
N_

o
o

O
..J

-2

-8

-10

\-
\

\- order = 1

o der = 2

-12
oao°l=,oo°Do°p.o.°.°l°°

ordq_r= 3

°

0 1 2 3 4 5 6 7 8 9 10

Number of Gauss Points

Fig. 3: Time-Marching Error at Final Time for • = e =

1.5

\,..
,- 0.5

°
w 0
E

o -0.5 ",

a_ \
o
o
,-- -1.5

0
...1 -2

-2.5

-3
orc_

3rd(.r =

(_rde

\ /

°=OOOoQ

0 1 2 3 4 5 6 7 8 9 10

Number of Gauss Points

Fig. 4: Time-Marching Error at Final Time for Missile system

12

